
SPRING 2023: MATH 791 EXAM 2 SOLUTIONS

For this exam, you may use your notes, the Daily Summary, and any homework you have done, but you may
not consult any other sources, including, any algebra textbook, the internet, any fellow graduate students, or any
professor except your Math 791 instructor. You may not cite without proof any facts not covered in class or the
homework. Please upload a pdf copy of your solutions to Canvas no later than 5pm on Monday, March 27.

Each problem is worth 10 points. To receive full credit, all proofs must be complete and contain the appropriate
amount of detail. All rings in this exam are commutative rings. Good luck on the exam!

1. Use the division algorithm to give a direct proof that if F is a field, then F [x] is a UFD, without first showing
F [x] is. PID.

Solution. For the existence of factorizations, we want to show every non-zero, non-constant polynomial is a product
of irreducible polynomials. Suppose this fails. We let T denote the set of non-constant polynomials that cannot be
factored as a product of irreducible polynomials and let X denote the set of degrees of the polynomials in T . If
T ̸= ∅, then X ̸= ∅. By the Well ordering Principle, there exists a least element n in X. Let f(x) ∈ T have degree n.
Then by definition, f(x) is not irreducible, so f(x) = a(x)b(x), for a(x), b(x) ∈ F [x] each having degree less than n.
Thus, neither a(x) nor b(x) belong to T , and hence each is a product of finitely many irreducible polynomials. Since
f(x) = a(x)b(x), the same applies to f(x), which is a contradiction. Thus, T = ∅ and every non-zero, non-constant
polynomial in F [x] can be factored as a product of irreducible polynomials.

For uniqueness, by what we have done in class, it suffices to show any irreducible polynomial q(x) is a prime element
in F [x]. Suppose q(x) | a(x)b(x) in F [x], and q(x) ∤ a(x). We claim there exist c(x), d(x) ∈ F [x] such that
1 = c(x)a(x)+ d(x)q(x). If so, then b(x) = a(x)b(x)c(x)+ b(x)d(x)q(x). Since q(x) divides the right hand side of this
equation, q(x) divides b(x), which is what we want.

We now prove the claim by induction on the degree of a(x). If the deg(a(x)) = 1, then we can write q(x) = a(x) ·λ+γ,
where λ, γ ∈ F are non-zero since q(x) is irreducible and does not divide a(x). Thus, 1 = −λ

γ
· a(x) + 1 · q(x). Now

suppose deg(a(x)) > 1. If deg(a(x)) ≤ deg(q(x)), we can write q(x) = h(x)a(x) + r(x), with deg(r(x)) < deg(a(x)).
Note r(x) ̸= 0, since q(x) is irreducible. By induction, we have 1 = c(x)r(x) + d(x)q(x), for c(x), d(x) ∈ F [x]. Thus,

1 = c(x)(q(x)− h(x)a(x)) + d(x)q(x) = {−c(x)h(x)}a(x) + {c(x) + d(x)}q(x),

which gives what we want. If deg(q(x)) < deg(a(x)), we write a(x) = q(x)l(x) + t(x), where t(x) is not zero, since
q(x) does not divide a(x). Since

deg(t(x)) < deg(q(x)) < deg(a(x)),

by induction, we have 1 = c(x)t(x) + d(x)q(x), for c(x), d(x) ∈ F [x]. Setting t(x) = a(x) − q(x)l(x) in this last
equation, and rewriting, gives what we want.

2. Let R be a UFD.

(i) Using the definition of greatest common divisor from Homework 17, show that any two non-zero, non-unit
elements in R have a greatest common divisor. Hint: How might this work in Z without using the division
algorithm?

(ii) Give a definition of least common multiple analogous to the greatest common divisor definition from Home-
work 17, and then show that any two non-zero, non-unit elements in R have a least common multiple (LCM).

(iii) Conclude that for a, b, non-zero, non-units in R: GCD(a, b) · LCM(a, b) = ab.

Solution. For (i), let a, b ∈ R be non-zero non-units. Factoring each of these elements into a product of primes, we

may write a = upe11 · · · perr and b = vpf11 · · · pfrr , where each pj is prime, u and v are units, and ei, fi ≥ 0. Thus for

example, if pc ∤ a, then ec = 0. Set d := p
min{e1,f1}
1 · · · pmin{er,fr}

r , so that d | a and d | b. Note, if each min{ei, fi} = 0,
then we take d = 1. We now show that d is a GCD of a and b. For this, we have to show that if c divides both a and
b, then c divides d. Suppose c is such an element. We can write a = ch and b = ck, for k, h ∈ R. Let ũqg11 · · · qgtt be a
prime factorization of c, where ũ is a unit. Then, upe11 · · · perr = ũqg11 · · · qgtt · h. By uniqueness of factorization, each
qj must be a unit multiple of some pi and gj ≤ ei. By reindexing the qj ’s we may assume qi = uipi, for 1 ≤ i ≤ t,
and thus gi ≤ ei, for 1 ≤ i ≤ t. Since c | b, each gi ≤ fi. It follows that each gi ≤ min{ei, fi}, and thus c | d, which is
what we want.
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For (ii), to define the LCM of a and b in a way that is analogous to the definition of GCD in Homework 14, we say
that h is an LCM of a, b if: (i) a | h and b | h and (ii) If a | k and b | k, then h | k. Essentially the same proof in the

paragraph above shows that h := p
max{e1,f1}
1 · · · pmax{er,fr}

r is an LCM of a and b. Part (iii) now follows from (i) and

(ii) since p
min{ei,fi}+max{ei,fi}
i = pei+fi

i , for all i. □

3. Show that any UFD satisfies the ascending chain condition on principal ideals.

Solution. Suppose a, b ∈ R are non-zero, non-units and ⟨a⟩ ⊊ ⟨b⟩. Write a = upe11 · · · perr , with each pi prime, ei ≥ 1

and u a unit. Then we have a = bc, with c not a unit. It follows that we may assume b = vpf11 · · · pfrr , with each
fi ≤ ei and strict inequality for at least one i, and v a unit. It follows that there cannot be a chain of principal
ideals above ⟨a⟩ with more than e1 + · · ·+ er strict containments. This implies that R satisfies the ascending chain
condition on principal ideals. □

4. Let R denote the set of polynomials in Q[x] with constant term in Z. Show that R is an integral domain having
the property that any two non-zero, non-unit elements have a GCD, but R is not a UFD. Hint: Use the previous
problem to show R is not a UFD, and then use the fact that Q[x] is a UFD.

Solution. It is easy to check that R is a ring, since it is contained in Q[x] and is closed under addition and multipli-
cation. Moreover, R is an integral domain, because Q[x] is an integral domain. We first note that R does not satisfy
the ascending chain condition on principal ideals, so R cannot be a UFD, by the previous problem. This follows since
⟨x⟩ ⊊ ⟨x

2
⟩ ⊊ ⟨x

4
⟩ ⊊ · · · is an ascending chain of principal ideals in R that does not terminate (since 2 is not a unit in

R). Indeed, if ⟨ x
2n

⟩ = ⟨ x
2n+1 ⟩ for some n, then there exists f ∈ R such that x

2n+1 = f · x
2n

. But then, 1 = 2 · f , which
is a contradiction.

To see that GCDs exist in R, let f, g ∈ R be non-zero, non-unit elements. We will use the fact the f and g have
a GCD in B := Q[X] and that GCDs in B are unique only up to units. First write f = nf0 and g = mg0, where
n,m ∈ Z are such that both f0 and g0 have constant terms equal to 1. Let d0 ∈ B be the GCD of f0 and g0 so that
d0 also has constant term equal to 1. In B we have equations f0 = d0 · u and g0 = d0 · v. But then, u and v must
have constant terms equal to 1, and hence belong to R. In other words, d0 is a common divisor of f0 and g0 in R.
Suppose that h|f0 and h|g0 for some h ∈ R. Since the constant term of h is an integer, it must be ±1. Since h is also
a common divisor of f0 and g0 in B, h divides d0 in B, say d0 = h · q, for q ∈ B. Since the constant term of h is ±1,
it follows that the constant term of q is ±1, so q ∈ R. In other words, d0 is a GCD of f0 and g0 in R. Now if δ ∈ Z
is the GCD of n and m, then it is straightforward to check that δ · d0 ∈ R is a GCD of f and g.

5. I ⊆ R be an ideal. Show that there is a one-to-one correspondence between the ideals of R/I and the ideals of
R/I. Show that under this correspondence prime ideals (respectively, maximal ideals) of R containing I correspond
to prime ideals (respectively, maximal ideals) in R/I.

Solution. Because R is an abelian group under addition, and any ideal of R is a subgroup of R, by the correspondence
theorem for groups, we know that if K ⊆ R/I is an ideal, then as a subgroup, K = H/I, for an additive subgroup
H ⊆ R. Suppose r ∈ R and h ∈ H. Then (r+I)·(h+I) ∈ K = H/I, since K is an ideal of R/I. Thus, (rh+I) ∈ H/I,
so that rh− h0 ∈ I, for some h0 ∈ H. Since I ⊆ H, we have rh− h0 ∈ H and thus, rh ∈ H, showing H is an ideal
of R. Since J/I is clearly an ideal of R/I for any ideal J ⊆ R containing I, we have a 1-1 correspondence between
the ideals of R containing I and the ideals of R/I.

It follows immediately from the paragraph above that K ⊆ R/I is a maximal ideal if and only if K = M/I for a
maximal ideal M ⊆ R. Now suppose P is a prime ideal of R. If (a+ I) · (b+ I) ∈ P/I, then (ab+ I) ∈ P/I. Thus,
ab− p ∈ I, for some p ∈ P . Since I ⊆ P , ab− p ∈ P , so ab ∈ P . Since P is prime, a ∈ P or b ∈ P , say, a ∈ P . Thus,
(a+ I) ∈ P/I, showing P/I is prime. The converse is similar.

6. Let M ⊆ R be a maximal ideal and R[x] denote the polynomial ring in x over R.

(i) Prove that there exist infinitely many maximal ideals M ⊆ R[x] such that M ∩ R = M . Hint: You will
need to show that a polynomial ring with coefficients in a field has infinitely many irreducible polynomials.
(5 points)

(ii) Show that there do not exist proper prime ideals M [x] ⊊ P ⊊ Q ⊆ R[x]. (5 points)

Solution. For part (i), we use the fact from Homework 19 that R[x]/M [x] ∼= (R/M)[x]. Since R/M is a field,
R[x]/M [x] has infinitely many irreducible polynomials, each one generating a maximal ideal in R[x]/M [x] (since an
irreducible elements generates an ideal maximal among principal ideals, and R[x]/M [x] is a PID). By the previous
problem, there are infinitely many maximal ideals in R[x] containing M [x]. The proof that F [x] has infinitely many
irreducible polynomials, when F is a field, is similar to Euclid’s proof that there are infinitely many prime numbers:
Suppose, by way of contradiction, q1, . . . , qr are the only irreducible polynomials. Then, no qi divides f := q1 · · · qr+1,
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and f is not a unit in F [x]. Since F [x] is a UFD, f is either irreducible or divisible by an irreducible polynomial that
is not any of the qi, which is a contradiction.1 Thus, F [x] contains infinitely many irreducible polynomials.

(ii) By the previous problem, the prime ideals in R[x] containing M [x] correspond to the prime ideals in R[x]/M [x]
which is a PID, by part (i). In a PID, (0) is a prime ideal and the non-zero prime ideals are also maximal ideals, so
that one cannot have a chain of primes (0) ⊊ P ′ ⊊ Q′ in a PID, and hence not in R[x]/M [x], which gives what we
want.

7. Let R be an integral domain, and P = ⟨p⟩, where p ∈ R is a prime element. Set I :=
⋂∞

n=1 P
n, where Pn = ⟨pn⟩.

(i) Prove that if Q is a prime ideal properly contained in P , then Q ⊆ I. (3 points)
(ii) Show that I = pI. (2 points)
(iii) Show that I is a prime ideal. (2 points)
(iv) Prove that if R is a UFD, then I = 0. (3 points)

Solution. For (i), suppose q ∈ Q. Write q = r1p. Since Q is properly contained in P , p ̸∈ Q. Thus, r1 ∈ Q, since Q
is a prime ideal. We may therefore write r1 = r2p. Thus, q = r1p = r2p

2. Continuing inductively, there exist rn ∈ R
such that q = rnp

n, showing Q ⊆ I.

For (ii), it suffices to show that I ⊆ pI. Take x ∈ I, and write x = pr. Then, for all n, x = pr ∈ ⟨pn+1⟩, so that
r ∈ ⟨pn⟩, for all n, showing r ∈ I. Therefore, I ⊆ pI, which is what we want.

For (iii), suppose I is not a prime ideal. Then for some a, b ∈ R, we have ab ∈ I and neither a nor b belong to I. We
can then write a = cpn and b = dpm, with p ∤ c and p ∤ d. Then cdpn+m = ab ∈ I, thus, cdpn+m = epn+m+1, for some
e ∈ R. Therefore, cd = ep. Thus, p | cd, so p | c or p | d, which is a contradiction. Thus, I is a prime ideal.

There are several ways to see (iv). Here is one way: Suppose 0 ̸= x ∈ I. Then we can write x = q1 · · · qr as a product
of prime elements, since R is a UFD. On the other hand, x ∈ ⟨pr+1⟩, so x = cpr+1, a product of at least r+1 primes.
This contradicts the unique factorization property.

8. Let R be a commutative ring. The Jacobson radical of R is defined to be the intersection of all maximal ideals of
R. Show that an element a ∈ R belongs to the Jacobson radical if and only if 1 + ra is a unit for all r ∈ R. You may
use the fact that any proper ideal in a commutative ring is contained in a maximal ideal.

Solution. Suppose x ∈ R belongs to the Jacobson radical. Then for any r ∈ R and maximal ideal M ⊆ R, rx ∈ M ,
and therefore 1 + rx ̸∈ M . Thus, ⟨1 + rx⟩ is not a proper ideal, since every proper ideal is contained in a maximal
ideal. Thus 1 ∈ ⟨1 + rx⟩, showing that 1 + rx is a unit.

Conversely, suppose x ∈ R has the property that 1 + rx is a unit for every r ∈ R. By way of contradiction, suppose
there exists a maximal ideal M with x ̸∈ M . Then M + ⟨x⟩ properly contains M , and thus M + ⟨x⟩ = R. We may
therefore write 1 = m + sx, for some m ∈ M and s ∈ R. But then m = 1 + (−s)x, which is a unit, and therefore a
contradiction, since M does not contain a unit. Thus, x must belong to every maximal ideal, which gives what we
want. □

9. Let R be a commutative ring and S ⊆ R multiplicatively closed set, i.e., 0 ̸∈ S and S is closed under multiplication.
Let Q denote the set of ordered pairs (a, s) ∈ R × S. Define (a, s) ∼ (a′, s′) if and only of there exists s0 ∈ S such
that s0(as

′ − a′s) = 0.

(i) Show that ∼ is an equivalence relation. Denote the equivalence class of (a, s) by a/s. (1 point)
(ii) Define a/b+ c/d := (ad+ bc)/bd and (a/b) · (c/d) := ac/bd. Prove that these operations are well-defined, and

then show that RS , the set of equivalence classes, forms a commutative ring. RS is often called R localized
at S. (4 points)

(iii) Show that the natural map ϕ : R → RS given by ϕ(r) = r/1 is a ring homomorphism, and then describe the
kernel of ϕ. (2 points)

(iv) Give an example of a commutative ring R and multiplicatively closed set S ⊆ R such that the map ϕ in part
(iii) has non-zero kernel. (2 points)

(v) What are the units in RS? (1 point)

Solution. For (i), the relation is clearly reflexive and symmetric. Suppose (a, s) ∼ (a1, s1) ∼ (a2, s2). Then there
exists s′, s′′ ∈ S such that s′(as1 − a1s) = 0 and s′′(a1s2 − a2s1) = 0. Multiplying the first equation by s′′s2 and the
second equation by s′s and adding gives: s′′s1s

′(as2 − a2s) = 0, showing (a, s) ∼ (a2, s2).

1There are UFDs with finitely many primes, e.g., a DVR. However, if q1, . . . , qr are the only primes (irreducibles) in a UFD, then
f := q1 · · · qr + 1 is a unit.
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For (ii) we just show addition is well defined. The proof that multiplication is well defined is similar, and that we have
a commutative ring follows easily from the fact that R is a commutative ring. Suppose a/b = a′/b′ and c/d = c′/d′.
Then there exist s, s′ ∈ S such that s(ab′ − a′b) = 0 and s′(cd′ − c′d) = 0. Multiplying the first equation by s′dd′

and the second equation by sbb′, and adding gives ss′{(dd′ab′ + cd′bb′) − (dd′a′b + c′dbb′)} = 0, which shows that
(ad+ bc)/bd = (a′d′ + b′c′)/b′d′, which is what we want.

For (iii),that ϕ is a ring homomorphism follows easily from the definitions. Now r ∈ R belongs to the kernel of ϕ if
and only if r/1 = 0/1 in RS if and only if s(r · 1− 0 · 1) = 0 for some s ∈ R if and only if sr = 0, for some s ∈ S.

For (iv) consider R := Z/6Z and S := {0, 1, 2, 22, ...} = {1, 2}. Then 2 · 3 = 0 in R, showing that 3 is in the kernel of
ϕ, for ϕ as in (iii).

For (v), we note that a/s ∈ RS is a unit if and only if a/1 is a unit, since 1/s is a unit in RS . Thus, we determine
when a/1 is a unit. We claim a/1 is a unit in RS if and only if there exist b ∈ R and s ∈ S such that sba ∈ S. To see
this, suppose a/1 ∈ RS is a unit. Then there exists b/s1 ∈ RS such that (a/1) · (b/s1) = 1/1. Thus there exists s ∈ S
such that s(ab− s1) = 0. It follows that there exists s ∈ S and b ∈ R such that sba ∈ S. The converse is similar.

10. Let S ⊆ R be a multiplicatively closed set. Suppose J, P ⊆ R are ideals of R with P prime and P ∩ S = ∅.
(i) Show that JS is an ideal of RS and PS is a prime ideal of RS . (2 points)
(ii) Show that if K is an ideal of RS , there exists an ideal J of R such that K = JS . Show that if K is prime,

then the there exists a prime ideal P ⊆ R, disjoint from S, such that such that PS = K. (2 points)
(iii) For J ⊆ R a proper ideals, when is JS a proper ideal of RS? (2 points)
(iv) Show that there is a one-to-one correspondence between the prime ideals of RS and the prime ideals of R

disjoint from S. (3 points)
(v) Let R = Z and S = {2, 4, 8, 16, 32, . . .}. Set I := ⟨6⟩ and J = ⟨3⟩. Prove that S is a multiplicatively closed

set disjoint from I and J and that JS = IS in RS , showing that there need not be a 1-1 correspondence
between the ideals of R disjoint from S and the ideals of RS . (2 points)

Solution. For (i), it is straightforward to check that JS is an ideal. Since P ∩ S = ∅, PS is a proper ideal of RS .
Suppose (a/s1) · (b/s2) ∈ PS . Then (a/s1) · (b/s2) = p/s3, for some p ∈ P and s1, s2, s3 ∈ R. Then, in R, we have
s′(s3ab − s1s2p) = 0. Thus, s′s3ab ∈ P . Since P is prime and s′, s3 ̸∈ P , ab ∈ P , and thus a ∈ P or b ∈ P . Say
a ∈ P . Then a/s1 ∈ PS , which shows that PS is prime.

For (ii), if K ⊆ R is an ideal, let J := {r ∈ R | r/s ∈ K}, for some s ∈ S and a, b ∈ J , Since the elements of S are
units in RS , J = {r ∈ R | r/1 ∈ K}. Suppose a, b ∈ J , then a/1, b/1 ∈ K and thus, a/1 + b/1 = (a + b)/1 ∈ K,
showing a + b ∈ J . Similarly, for any r ∈ R, r/1 · a/1 = ra/1 ∈ K, so that ab ∈ J , showing J is an ideal of R. By
definition, JS = K, as required.

For (iii), JS is not a proper ideal if and only if 1/1 ∈ JS if and only if there is j ∈ J such that 1/1 = j/1 in RS if and
only if there exists s ∈ S such that s(j− 1) = 0 in R. This latter condition implies sj ∈ S, for some j ∈ J and s ∈ S.
Conversely, suppose sj = s′ for s, s′ ∈ S and j ∈ J . Then 1 · (js− s′) = 0 in R, so that j/s′ = 1/s in RS . Since 1/s is
a unit in RS , JS is not a proper ideal. Thus, JS is a proper ideal of RS if and only if for all s ∈ S and j ∈ J , sj ̸∈ S.

For (iv), if P ⊆ R is a prime disjoint from S, then PS is a prime in RS and any prime in RS has this form. We must
show that for P ′ := {r ∈ R | r/1 ∈ PS}. P = P ′. Clearly P ⊆ P ′. Suppose r ∈ P ′, i.e, r/q ∈ PS . Then r/1 = p/s,
for p ∈ P and s ∈ S. Thus, s′(rs − p) = 0, for some s′ ∈ S, and hence ss′r ∈ P . SInce ss′ ̸∈ P , r ∈ P , showing
P ′ ⊆ P . Thus, P = P ′ and we have the required one-to-one correspondence.

For (v), since S = {2n | n ≥ 1}, S is multiplicatively closed, and it is disjoint from I and J since no element
of S is divisible by 3. Moreover, we have ⟨6⟩ ⊆ ⟨3⟩, so in RS , IS ⊆ JS . However, in RS , 2 is a unit, and thus,
3/1 = (1/2) · (6/1), showing JS ⊆ IS , which gives what we want.

Bonus Problem. Any part you work must be correct to receive bonus points. Let R be an integral domain and
suppose S ⊆ R is a multiplicatively closed set such that every element of S is a product of prime elements.

(i) Show that RS is a UFD, if R is a UFD. (5 points)
(ii) Let T denote the set of prime factors appearing among the elements of S and assume that no element of R

is divisible by infinitely many primes in T . Prove that R is a UFD, if RS is a UFD. (5 points)
(iii) Use the foregoing to give a proof - different from the one given in class - that if R is a UFD, then the

polynomial rings R[x] is a UFD. You may assume the result from class that a prime element in R remains a
prime element in R[x]. (5 points)

Solution. We first note that since R is an integral domain, a/s = b/s′ in RS if and only if s′a = sb in R. For part
(i), we note that since any element in R is a product of prime elements, and any element in RS is a unit times a/1,
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for a ∈ R, it suffices to show that if p ∈ R is a prime element, and p does not divide any element in S, then p/1 is
a prime element in RS . (Note: If p | s, for s ∈ S, then s is a unit in RS , and therefore, p is a unit in RS). For this,
suppose p/1 divides (a/s) · (b/s′) in RS . Then (p/1) · (c/s1) = (a/s) · (b/s′) in RS . Thus, in R, pcss′ = abs1, so that
p divides abs1s2. Since s1s2 ∈ S, p ∤ s1s2 so p | a or p | b, say a = pc, for c ∈ R. Then a/s = (p/1) · (c/s) showing
that p/1 divides a/s in RS , so p/1 is a prime element.

For part (ii), the difficulty in reversing the direction of the argument above is the following. If q ∈ R is such that q/1
is a prime element in RS , then q need not be a prime element in R. For example, see 10 (iv) above. The point is, that
given such a q, we need to factor out all of the elements from S (or prime factors of elements of S) that are factors of
q and this requires some sort of finiteness condition. So, assume that no element in R is divisible by infinitely many
pi in T . Let q ∈ R be such that q/1 is a prime element in RS . Choose the principal ideal ⟨p⟩ so that p is not divisible
by any pi ∈ T and ⟨q/1⟩ = ⟨p/1⟩ in RS . This is possible once we divide out from q the finitely many pi ∈ T that
might be factors of q. We now note that p is a prime element in R. Suppose p|ab, for a, b ∈ R. Then since p/1 is a
unit multiple of q/1 in RS and q/1 is a prime element, p/1 is a prime element in RS . Thus, p/1 divides a/1 (say).
Thus, in R, we have an equation sa = pr, for r ∈ R and s ∈ S. Now, let pi be a prime factor of s. If pi divides p,
then pi divides q, which is not the case, since we have removed all such pi to obtain p. Thus, pi divides r. Similarly,
every prime element in P that divides s divides r, so s divides r. Cancelling s from the equation sa = pr, we get
a = pr′, for some r′ ∈ R, which shows that p divides a. Thus, p is a prime element of R. Now, suppose a ∈ R is a
non-zero, non-unit element. By hypothesis, a is divisible by at most finitely many primes in T , say a = a0b, where a0

is a product of primes from T and no prime in T divides b. In RS , we can write b/1 as uq1/1 · · · qh/1, where u ∈ RS

is a unit and each qi/1 is a prime in RS . From the preceding, we may write each q1/1 = t1 · (p1/1), where pi ∈ R is
prime, and ti ∈ RS is a unit. Thus, gathering units, we have b/1 = v · (p1/1) · · · (ph/1) in RS , where v ∈ RS is a unit.
Thus, v = s/s′, with s, s′ ∈ T . Therefore, in R, s′b = sp1 · · · ph. Since no prime factor of s′ divides any pi, all of the
prime factors of s′ divide s. Thus, we may cancel s′ from both sides of this last equation to obtain b = s′′p1 · · · ph,
showing that b is a product of primes. It follows that a is a product of primes, and therefore, R is a UFD.

For part (iii), let S be the non-zero, non-unit elements in R. Then every element of S is a product of finitely many
prime elements in R, since R is a UFD. If p is a prime element in R, then, by what we have shown in class, p is
a prime element in R[x], thus S is a multiplicatively closed set of elements in R[x] whose elements are products of
prime elements in R[x]. Suppose p is a prime element in R, if p | f(x) in R[x], then p divides every coefficient of f(x)
in R. It follows that every non-zero, non-unit in R[x] is divisible by only finitely many primes appearing as factors
of elements in S. Thus, by part (ii), R[x] is a UFD, if R[x]S = RS [x] is a UFD. But RS = K, the quotient field of R.
Thus, R[x]S = K[x] is a PID, and thus a UFD, which gives what we want.

5


